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This report is one of a series which is the result of a joint

undertaking of the Departments of Aeronautical Engineering, under

the supervision of Professors J. S. Newell and H. S. Tsisn, and of

Mechanical Engineering, under the supervision of Professors J. Wae

and W. M. Rohsenow, at the Massachusetts Institute of Technology for

the U. S. Air Forces under Contract No. W33-038 ac-17239. The work

was performed in the Division of Industrial Cooperation as projects

DIC 6553 and DIC 6580. The work began in October, 1947 and extended

to June, 1949.

Since the basic problems relating to the thermal effects in a

structure moving at supersonic speeds are relatively new and unsolved,

the major efforts in this study were of an exploratory nature. Rather

than attempting to cover a large number of different structures, it

was deemed advisable to select a particular case, namely that of a

thin wedge-shape wing travelling at supersonic speeds, and to dis-

cover the basic problems which must be solved in order to design such

a structure safely. Even for this particular case only the more im-

portant variables could be examined in the time available.

The problem was divided into the following four parts:

a. The determination of the temperature distribution in the

wedge-shape wing. The results are given in Report A.

b. The thermal stresses in the wing caused by this non-

uniform distribution. The results are given in Report B.

c. The effects of this temperature distribution on the aero-

dynamic behavior of the wing. The results are given in

Report C.

d. A sear& of the literature in order to discover any previous

.work in this field. The results are given in Report D.



In this report, a study is made of the deflections of a

wing due to aerodynamic heating, and the effects of these defleotions

on the aerodynamic performance of the wing. The temperature distribu-

ti•n used is that calculated in Report A of this series by a method

of finite differences. A different approach to the heat transfer

problem is suggested in an Appendix to this Report. For the sake of

simplicity, the wing which is considered is a flat rectangular plate

of constant thickness. However, methods of generalizing the procedure

to solid wings of variable thickness are indicated.

The analysis is based upon a strain energy procedure rather

than a solution of the differential equations of thermo-elasticity.

In this procedure, it was found necessary to take into account the

coupling of streasis in the plane of the plate with transverse deflec-

tions of the plate.

Results are given in tabular and graphical form, and show

that in general the effect of these deflections is not large. The

principal aerodynamic effect is an increase in drag coefficient. How-

ever all of these calculations are based upon a Mach number of six,

and thus at smaller Mach numbers, the deflections will definitely

not reach serious proportions. For
NTIS QRA&
DTIC TAB 0l
Unarmounqed 0

•,BY

iA vP. &At~ or~

Dist



U TABL WF CNM

Page

Introduction 1

Notations 2

Forutlation of the Problem 3

Plate Stresses 4

Beanding Deflection Ul

Solution for the Bending Deflection 15

General Conclusions on the Deflections by Aerodynamic Heating 21

Figures and Tables 23

Appendix I, Temperature Distribution in an Aerodynamically Heated Wing 35

Appendix II, Effect of Deflections an Aerodynamic Coefficients 48

Bibliography 54



As shown by the results of calculations in the previous reports
of this series, non-uniform heating by rapid acceleration to supersonic
speeds in dense atmosphere leads to very large thermal stresses in the
material. These thermal stresses are calculated on the assumption that
the dimensions of the wing are infinitely large. If the dimensions of
the wing are finite, there will be some release of stresses due to the
effects of free edges. To determine this effect is part of the aim of
this report. However, since the material will be assumed to be comp4etia y
elastic, while plasticity of the material must necessarily appear at the
high prevailing temperature, the magnitude of the stresses so calculated
cannot be considered as quantitative. The main purpose of the present
study is rather the determination of the deformation of the wing due to
aerodynamic heating. As will be seen later, the deformation is indepen-
dent of the value of Young's modulus and is only a function of the tem-
perature distribution and the thermal coefficient of expansion of the
material. Therefore, the appearance of plasticity at high temperature
and the resultant changes in the effective elastic modulus, will not
essentially modify the calculated results on deformation. Hence, the
assumption of complete elasticity is justified for the calculation of
the deformation of the wing.

Specifically then, this report attempts to obtain a first
order estimate of the transverse deflection of a cantilever wing caused
by the thermal stresses set up by a transient temperature distribution.
The wing is assumed to be accelerated at a constant rate starting at a
Mach number of 1.4. The acceleration is assumed to occur at constant
altitude and constant wing loading. The angle pf attack is thus deter-
mined to maintain this constant wing loading during the period of accel-
eration. During this period of acceleration there is heat transfer from
the air into the wing, producing a temperature distribution as a function
of time. This temperature distribution has been calculated for a partic-
ular set of conditions by a method of finite differences as given in Report
A of this series and it is this temperature distribution which will be used
in the following work. *

To calculate the deformation and the stresses with a given tem-
perature distribution, one can proceed by either of two ways: 1) To
solve the exact equilibrium equations and the equation of compatibility;
2) To use the energy method. This first method is more exact but the
labor involved in actual computation is prohibitive for the case of a
cantilever wing. The second method will thus be used. This method has
the advantage of being flexible and can be adapted without any difficulty
to wings with arbitrary thickness variation. For the detailed analysis
given below, the thickness of the wing is assumed to be constant to sim-
plify the calculation. This is believed to be justified for the present
study, as the aim is to obtain a first order estimate of the deformation
rather than the exact numerical value.

*In an Appendix to the present Report, an alternate method based upon the
Laplace Transform will be presented.
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1) Cd n local drag coefficient

2) Cj a local lift coefficient

3) Cw. a local moment coefficient

.4) C, z a pressure coefficient

5) WE '-a- plate bending stiffness•a.e-v,)
6) E z Young's Modulus of Elasticity

7) G E:

8) W = plate thickness

9) A a semichord

10) L : aemispan

11) C() = Laplace transform of( )

12) N 3, : force in x-direction per foot

13) Nuh• force in y-direction per foot

14) Nx* m h * a shear load per foot

15) R = u&

16) S ýVL

17) T a temperature

18) "% a temperature averaged with respect of Z

19) u, a displacement in the x-direction

20) -%r = displacement in the y-direction

21) V s potential energy

22) w- : displacement in the Z direction

23) W a strain energy function

24) X 0 spanwise coordinate

25) * - chordwise coordinate
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26) Z - transverse coordinate

27) O. - linear thermal coefficient of expansion

28) •bl'- shearing strain

29) E x tensile strain in the x-direction

30) El a tensile strain in the y-direction

31) V/j

32) _- time

33) V : Poisson's ratio

34)' YL.

35) IY = strain energy of a flat plate

36) 1T, z strain energy due to bending stresses

37) ' 5 * strain energy due to plane stresses

38) O• a tensile stress in the x-direction

39) Cr*. = tensile stress in the y-direction

40) 'r.,- shearing stress

41) ' - thickness ratio a k/&j

42) c z Airy's stress function

FORMULATION OF THE PROBLEM

The coordinate system and dimensions to be used in the analysis are
as shown in Figure 1. The followLig set of non-dimensional parameters will
also be used in the analysis.

The results of the finite difference procedure indicate* that the
temperature distribution at any instant can be approximated quite closely by
an expression of the following form, where -r(%, *, Z is the local temper-
ature at the point ( Z * 3 ) above the uniform temperature before heating.

TSe Re4o 5 A t (.

*See Report C
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The coefficients A, B, and C are only functions of the span-wise coordinate y.
The influence of the wing tips on the temperature distribution is thus neglected.

From this expression, it is easily seen that A, B, and C have the fol-
lowing significance.

~U -- Iva-,.

It is also found convenient to define the mean temperature as:

%/i6

Tz=t -T iL% = At* (+4)~ 2

The deflections of a wing are mainly due to the bending of the wing
surface. But bending is the result of the difference in expansion or the
difference in temperature of the material at the top and the bottom surfaces.
If this is true, then only the linear term %(*I '&/h in the temperature dis-
tribution will influence the deflections. However, this is not true: Due to
the non-uniformity of the mean temperature defined in (4), there is rather
large stretching and compression of the median surface, lying half-way between
the top and the bottom surfaces. The stretching and compression of the median
surface yield an average tensile or compressive stress in the wing. These are
the stressei in the plane of the wing. Such stresses will influence the bend-
ing of the wing through coupling effects. Therefore, to calculate the deflec-
tion of the wing, the procedure can be divided into two steps;

1) Calculate the average or plate stresses
2) Calculate the bending with the coupling effects of the plate

stresses.
These steps will be treated separately in the following sections.

PLATE STRESaES

Let

£I,. tensile strain in the x-direction

Ev- tensile strain in the y-direction

- shearing strain

z's tensile stress in the x-direction

O-- tensile stress in the y-direction



- shearing stress

E: Young's modulus

V z Poisson's ratio

CC a linear thermal expansion coefficient.
Then the relations between the strain and stress are:

+

E

The equilibrium equations are:

!A. +~

+

In addition, the compatibility equations become:

J %- # _ % & E 1'6e V ( 7 )
14,0 X" I Wa.

Combining the stress-strain equations and the compatibility equation:

Or -V r 4- EOC VaL,; = L(14Y) b(x)

But differentiating the equilibrium equations with respect to x and y respec-
tively, and adding:

%6Vx %,(9)
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Hence by eliminating 'Xl6 between (8) and (9):

or:or o

Now introduce the stress function 4 defined by:

L T=I = =- (

(II) becomes:

Thus the differential equation (%S) must be solved subject to the
boundary conditions of zero normal and shear stress on the free edges. The
supported end of the plate is assumed to be free to displace in the y-dfrec-
tion. Tha same boundary conditions are satisfied if the cantilever plate is
considered as one half of a rectangular plate free at all edges. Thus for
convenience, the cantilever plate is replaced by an equivalent free plate of
twice the length, as shown in Figure 2.

The boundary conditions become:

At ,V

A particular solution to equation (1) is:

OnP = -I (is)

Then: Orx0
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The problem in thus reduced to that of finding a homogeneous solu-
tion to the equation:

IL VF NP 0)

With the boundary conditions:

At x ± L -- woa if

At S = 4,? ~L.A=0

But this system is identical with that of finding the stress dis-
tribution in a plate loaded as shown in Figure 3 .

SOLUTION OF THE PLAUNE STRESS PROBM

This problem can be solved by a strain energy procedure developed
for plane stress. The problem is equivalent to that of finding a function 4,
which satisfies the boundary conditions and minimizes the integral:

V ~ (O.r -I. (~X+ X(.,}4x ~(

A solution is assumed in the form,

MwIL EXS4T.AVLW ý (%3VI)'( -q%- )' [0(, + CK

where the K L are undetermined coefficients.

It can easily be seen that this function automatically satisfies the
boundary conditions, and hence it is only necessary to minimize the strain
energy. It is assumed that the mean temperature can be expressed in a power
series as given below:

*See for instance: Timoshenko, "Theory of Elasticity", McGraw-Hill, pp. 151.
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Substituting these expressions into the expression for strain energ,
there follows:

+" .4("4-o5S1 -I.42 ÷ •I(, --,).-:- - •+•.,• 5-s, + ,o3•( + E.V,,,v"÷. -,6

+4-1.4S3 iC 3 -LV%6*10.0 Z3S6ZR 4- .2.1'1 V4 I
+ S 8- %' 4-- Of R " 6 ,.- ,+ SSG] (,X

-4 1,sIt* -4÷ 1.+s3 Kj, IK a.~

where R is the "aspect ratio"

But the minimizing conditions are that:

M -I."#.t"
(IS -' Re 1. 11 R't' ,l. EK LL .1.7 3 I-t- 4- 1.'5

ILIq2L 4,+% j cc, 1._.4S, R* 4 C6.5- F"' +T'48. t.IKLL

R z.
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As an example, the wing whose temperature distribution was calcu-
lated before by the finite difference method,* will be analyzed. This wing
has a thickness h of 0.22 ft. and a semi-chord A of 2.75 ft. The thick-
ness ratio is thus 8%. -ihe wing is loaded to 100 lbs. per square foot and
is accelerated at 50,000 ft. altitude from Mach number 1.4 to Mach number 6
at 1 Mach number every 30 seconds. The calculated temperatur-, distribution
at Mach number 6 is given in Report A. Expressing this temperature distribu-
tion as a polynomial as expressed by (Lo), the following coefficients are
determined:

to a 317

't, :-184.2

*4 : 252

t,: 765 (Z 3)

t4.- 2135

t. 2638

t, -- 2057

Using a value of R a 3, the three equations become:

IL13 -2- 4s) woo

a. 4. 5 -14j .i- ,53.19 1& = -M- G;'o

whose solutions are:

t-sN =--3. LV.

at - = 1 9 . 5 ,( L 4

*In an Appendix to the present Report, an alternate method based upon the

Laplace transform will be presented.
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Using those values, the stress function becomes:

4P;

The stresses then are,

E CC I..'. 3.2

+ 3A XII~-~-s5- s.-(

The results of the calculation are presented in Fig.5 . It is seen
that only the direct stress in the span-wise direction or MI is large. This
is to be expected as the large temperature changes in the chord-wise direction
would require large changes in the span-wise expansion along a chord. But such
large variations are prevented by the continuity of the material in the span-
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wise direction. This explains large values for the span-wise direct stress.
Near the leading edge and the trailing edge, where the temperature is high,
the material tends to expand more than allowed, thus Or is negative or com-
pressive. Near the mid-chord, the temperature is low; thus the material tends
to expand less than allowed, the %Ljis positive or the stress is a tension.
Of course, at the wing tip, x 1, the direct stress crg has to be zero; there-
fore Wx must decrease as * increases from 'I a 0 to % a 1. This decrease is
however rather sloT for small values of 3 . Hence, the tip effect is limited
to a rather small region.

It should be noted that the above result is obtained without any
assumption as to the values fo E and OC . In fact the stresses are directly
proportional to the product E 0 . The only other explicit parameter is the
aspect ratio R of the wing. However, one must bear in mind the effect of
scale on the heat transfer and thus the calculated result is not strictly
applicable to wings of other dimensions. The influence of R can be easily
calculated by going back to (24).

BEEMING DEFLECTION

Having calculated tVe plane stress distribution, it is now desired
to introduce it into the calculation of the transverse deflections of the
plate. To do this, the total strain energy stored in the plate as it deflects
is divided into two parts; first that due to the components of thermal stress
producing pure bending moments; and second that due to the coupling of tran-
sverse deflections and plane stress. It is the sum of these two energy compo-
nents which is then to be minimized. First the energy due to the bending
stresses will be developed.

To calculate this expression, the usual plate assumptions on the
stresses are made. These assumptions are that:

Accordingly, the equilibrium equations and stress-strain equations
become:

E --

E +
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where G a

The first, second and fourth of the stress-strain equations can be
rewritten as:

"L ~Y~..=)GL-,1

T~~- GVI

The next assumption is that the deflection wr may be approximated
by w•r( , . , the deflection of the mid plane of the plate. With this
assumption, the last two stress strain equations can be integrated directly
to yield:

It can be seen that these expressions are equivalent to the usual
bending assumptions of displacement proportional to distance from the neutral
axis,
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The strain energy can be expressed as an integral:

where W is a strain energy function such that:

=- Wa

Integrating the expressions and substituting for the stresses from
the stress strain equations:

-I*T nfJ Ex + + +£)Zui, V)) 9Cto- (3s)

But:
IL

It is only the terms involving w in these expressions that effect
the bending strains, and hence the energy function W for bending becomes:

16 I•.-L *&-• 16''(aw arwanrx. CIb:).tr a)wIn
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Thus integrating this function directly with respect to Z:

where B is the coefficient of the linear term in (a).

The expression for the strain energy due to the coupling of plane
stress and transverse deflections is:*

Where: Nx ý %Crx

The total energy of the plate is thus the sum of these two compo-
nents, namely:

1T U ÷Irk

The eq-iilibrium position of the plate is determined by minimizing the energy

*See Timoshenko in his "Theory of Plates and Shells", pp 305.
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SOLUTION FOR E MBEDING DEFLECTION

It is now necessary to ass~ue a solution for the displacement
which satisfies the necessary boundary conditions on the edges where
displacements are prescribed, and which contains undetermined coeffi-
cients to be determined by the variational procedure. In the case of
the cantilever plate, the only edge on which displacements are pre-
scribed is the clamped root, and hence the free edge boundary condltions
do not need to be explicitly satisfied in the form of the assumed deflec-
tion. This fact, which can be substantiated in Treffts for example*, does
not seem to be generally mentioned in well-known texts on the theory of
elasticity. Physically this is easy to understand, as a free edge would
certainly seek the position of minimum strain energy among a&U kinema-
tically possible forms of deflection. This situation is of fundamental
importance, because it is the satisfying of the free edge boundary condi-
tions which makes the solution of the cantilever plate problem difficult
to obtain by other methods. A form of the deflection which meets these
requirements, and which will be used in the variational procedure, is as
follows:

UT S 0, - + 6;j4X

Then the second group of terms represents the change in angle of attack of
the section and the third group of tirms represents the change in the curva-
ture of the section. Introducing this expression, and the previously
calculated Ir . • A^gp T,& into the strain energy expression, and
assuming that:

'a.

where the 0( have to be determined from the given temperature distribution:

qE V.8hg tSj 4 CI. b, lt%4L m-S . Qi, 4-I. a 12 C

*Treffts: Mathematische Elastizitatatheorie. Handbuch der Physikj,
Vol. 6, Kap. 2, pp. 66, (1928)
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V~l~~ +.E3 h,+I~ R'aro'

4'%%~~,~ Q.,s:~ %- -f,~ '4'%4'a

3 A.+.[':L (z.a.,
Aso

+. + 3 6hi 91) 3 (SAL.3 -ý- 3 IL- I

I + .k(.W .. (CA + 3 .-. 3 106

"4bLb(I.aL/4'A•.4.oSAa +•'%h.(.oAs - -. S. iiJ"

44. (1, oIaA,4-. -4 GA,&) -- 4, I, (,-A, A.+ A,.)

+ 14(L.5 WA 1.-- qiS AL) 4t d~o.aS (I 1-oxi At I)cf~

S(1 A)(.4 4 )

.*L7 L tp Ap.
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whereAla ECAL w % %/L

frrm the plane stress calculations

As a concrete ezample, the wing considered in the Section on
plane stress will be used again. From previous temperature calculations,
the coefficients in the expansion for 1/% are as follows:

z - oa,%

Assuming the wing is made of steel, introducing a value of a( a. 28 itOId
a.•l~and a value of R a 3, the equation becomes,

+40.64 ILS "36 + I%.$ baI.,SL + 4&. 6, 6 "

36.o 3.- L + 'L. X bIL 5) +s .r. 3 61L5L

4't 94-4 0-as- ý + Itl W~A3 SL +3s., .S

- 01o.' -% ,4 3 - . ot,) -7 .t

""8-, 3 1 .3,% b6 "4 ".0 5 -0

+ 3&•l+., 4 9 IL 61 ,, 0 4. 6o , zb



33. S 7 0 -4L6& 0.16 A6

7~~~~~~ +8 41-9Z b 3.71

+I.? 775a. 3 -4 .+. 15*5- b6 I3 (4•)

Combining terms, this becomes,

3Eh (2,s so'-.5-o. )O.- +(38, soos'- 91. -2),.,

6,~ 6a + ,q5 s--a

-(-(14 e.soo '-- s L .S.70 +(, sr, 9Io s'-o * . 1)m...,,

+(I V -o00 S'- XS..7o)uQ . ., r ( ao *o4-. S 1. ,) I..

4(,t6o,0OS 5 -4.so) V%6 4( (1.17o 1S- 59.s, o.

+ (,--IS oo 6 L 6.% - +. .-, •o k ' ,- (3 o.. 4 , t,

- .3173-( hL (,+ Z-.1- 3 M6) - .ji.oh b

(4-7w)
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Differentiating this expression with respect to the coefficients gives the six
equations to determine the CL, tL Aft0 CL :

(L,~ s o_,%. o6, 100.•o 3%- -A 1) , - 1{, S T 3'1s-5. 9) L

+(3 ,,4SOe* 30.1)hj 6. S. 14 %

(33,,SOOS- s,.3Z)f, .. (77,soos3-14. 0o) 6 +(6s, TooS -4-N.7)0.3

-(6,-4UoS" + .*-6.)6 3  = IL.38k.

(,r1.r~os~,s~4)a. +(irrfo 8L. 41.11)1. rr, * 35

(tsr,,oo 5"L- 4v.vi).L1  +dI'7xcoo S'- 0-s.b .. t' 7f g(4

ZAS 635~ ui . 352L6D

(all5•ro •&o- ..7)&, 4(GrO Oos ' - e40.7)b, - 1 1i.5 b,

(SO04@S".* 3O.1)0.8 +%k65,00o S + *.Se)h 6 , -it 2.156 6%

+ (%Ie,seoS '3 4,4 . %) 634 + (,s'9AO, OO0 S5 - 6S . 3 S4) 63 -- 2-.1o0

As yet, no assumptions on the geometry of the plate have been made
other than R .- 3. The expressions for the temperature distribution, however,
were derived for a particular chord and thickness ratio, and presumably would
be different for other sections. The values used in the temperature calcula-
tions were:



-20-

L,0.I.L Fv.

JL " z. .7" X F:-

Since R has been specified as 3,then L - 8.25 ft, and hence S a .0267. For
these values, the coefficients satisfying the six equations are:

QLS U -. 0405.

6, = . 032o

Ima . 00o 738

&,lSM . 00 !1 S6.

Hence, the deflection Ur in feet. becomes:

Ur O4o 3oIL -. - ] 03 .1oo, [ IeS oo Z 7.3

+ I.0 ,,, .. ,0,]-,b " (so)

A plot of this calculated deflection is given in Figure 6. It is
seen that the deflection is greatest at the wing tip. However, even at the
wing tip the deflection is quite small. The significance of these results
will be discussed in a later Section.

METHOD OF .ALaJLATION FOR SOLID WINGS OF VARIABLE THICKNESS

The procedure developed in this work is applicable to wings of
variable thickness provided that several modifications are made. The only
ohanges involve different limits of integration in the expressions for the
various strain energies. In all cases, the thickness h(tI*) must be left
= nside the integral when integrating with respect to x, and y. The modifica-
tions are as follows:
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-21LEquation (18) becomes:

* ~ ' V IfE!(a~1A k. + 4144,)

* ~Equation (38) becomes:

[k* Ar - 2.1+ )O

And equation (39) become• :

Using these modified expresaones, the rest of the procedure may be

carried out exactly as in the case of the constant thicknees wing.

GENERAL COCUSIONS ON THE DEFLECTION BY AERODYNAMIC HEATING

For a wing of thickness equal to 0.22 ft.A chord 2.75 ft., accele-
rated at an altitude of 50,000 ft., 100 lbs per ft.4 loading aMd 1 Mach number
every 30 seconds, the deflections due to aerodynamic heating at Mach number 6
are given in Table 1 for various values of the coefficient of linear thermal
expansions and aspect ratios. The method used in makin these calculations is
explained in the previous Sections. This Table also gives the changes in the
aerodynamic coefficients of the wing due to such deflections. The aerodynamic
coefficients are calculated by using the simple Ackeret formulae* for thin wings.
It is seen that in all cases the change in the aerodynamic coefficient are small.

Therefore, the results of the present analysis indicate that the
deflection and the effects of deflections due to aerodynamic heating on the
aerodynamic performance will, in general, be small.

This conclusion is further strengthened by the following observations:

1) The calculated deflections and the effects of deflections are inde-
pendent of the Young's modulus. Therefore, the decrease of Young's
modulus at high temperature of the material will not influence the
results of calculation.

*See Appendix II
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2) At higher temperatures, the Young's Modulus will be decreased.
Then with a given aerodynamic loading, the deflections due to
this aerodynamic load will be increased at higher temperatures.
Therefore, at the high temperature caused by aerodynamic heating,
the deflections due to the aerodynamic load will be much larger
than the deflections due to non-uniform heating.

3) If the aircraft is flown at a much higher altitude, the lower
air density will greatly reduce the rate of heat input to the
wing. Then the non-uniformity of temperature distribution over
the material of the wing will be greatly reduced. This will in
turn greatly decrease the importance of the deflections due to
aerodynamic heating.
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TIMPERUTURE DISTRIBUTION IN AMAODYIMICALLY BELTED MM NG

A wing is asumed to accelerate at a constant rate starting from
steady flight at some supersonic Maeh number. The adiabatic wall tempera-
ture which acts an the surface of the wing is thus a function of time, and
a non-steady state heat transfer problem arises. It is assumed that there
is no heat flow in the spanwise direction of the wing, and thus the problem
is a two dimensional one. The coordinate system used an the section is as
show in Figure 4.

The differential equation of heat transfer for this system is:

2-T E6 -

1-116T

Since Y a and are of the same order of magnitude,
for small values of Ta :

,'N b-T

Hence, assuming that 4L" is negligible, the differ-

ential equation becomes:

1 r_ W
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which is the one-dimensional equation.
Boundary conditions: The plate is assumed to be insulated at the surface
"Z a 0, and heated according to Newton's law at the surfaoe-z. z . At
time *z 0, the temperature is assumed to be identically sero. Thus the
boundary conditions are:

" o0 : "T"

It is believed on the basis of experimental data that the surface
coefficient of heat transfer, and the adiabatic wall temperature can be
approximated by expressions of the form:

FeaCo- -t CJ.. &A

where a, b, c, and d are constants

With these two expressions, the boundary conditions become:

•"= 0 'rM " 0m

'4./ 7. 0L 4- 6 '-(o_0r

74 '" 1% 1- •'4• -( ÷ • c A

The Laplace transform operator is now applied to both the differ-
ential equation and the boundary conditions. The operator is defined as
follows:
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The result of this operation is:

3: ar = (,o.. o0

The equation has thus been transformed to a second order total differential
equation whose most general solution is:

The first of the two boundary conditions determines that B :0- ,
and the second yields the following first order differential equation:

d*so

7. In,0. 4- IL OS L

Or, writing everything in terns of eo :
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AAm

s o h

HCo,, le~t AM.' Ir.(-," B.M('. w "• 6- •

tUso

and the differential equation becomes:

-- -- , e(, c , + B4 +.

e irien - TV1

or# equating coefficients of 01~%C

iPI
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The homogeneous solution to this equation can be obtained directly in the
form of an integral:

As p approaches infinity, the Laplace transform of the temperature
must approach zero. This can be seen by the following analysis:

=1 "'m P 0. -+"

=.M ""- 1

The temperature T is bounded by the adiabatic wall temperature at
all times. Hence:

"t'T ce- L

and-r ,-t. - e- -rm "'• ,.u
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Hence, by the theorem on upper bounds of integrals:

.09 If p is now allowed to approach infinity, the products L 6-
Se7 Iand L5 C-W approach zero, and V'p , '/p,•approach zero.
Hence both M and N approach zero, and:

2bewn, AS,,w A cL % .op-•mp-b.-

The homogeneous solution of G%% however contains a factor of a
This factor produces a contribution to A of the form:

A4= L(%%]~;

slo

where SC () does not approach zero when P becomes infinite.
But this contribution becomes infinite when P becomes infinite, and hence
contradicts the requirement that A approach zero. Thus, the coefficient K
of the homogeneous solution must be zero. The particular solution is found
by the method of variation of parameters. A solution is assumed in the form.

-e

When introduced in the differential equation, the function f is expressed
as a quadrature.
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If this expression is integrated by parts repeatedly, an asymp-

totic expansion for f is determined, which contains increasing negative

powers of % . This expansion is as follows:

mg& #.L*,. + bd''•" ,?+,,,J &I" + I" *-b___ T1, +N." . ' m,.~

L,-- 44 b v4},F A V 4 IA~
_ _"_ _"__.,_....

I~I

A. KOO 4

A& 
iiit•

%~

iLI.%

* ~But: L%1.u +4
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The factor cOI can now be expanded in inverse powers of
% , to yielda

-- + a . :e.4••+4-h .-4

-•- .÷L , I•e-j e'.+(.,IL ' .,,. 8 ,+ '}e-''.,..

* .m,,,.,.u- ÷,. )e"'"• ÷ i 3 1,.,) *' 4•-''÷ (31'" =•)-•.'
nun
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Introducing this into the expression for f (%a , and arranging
terms in order of negative powers of % , the expression becomes:

1* A& . 4 2 ÷11..LqI. "Bp=•L- .

IL . k Xa-4

±L.•. Ž--ez-U+ •" ÷ e' + Le.- ÷-

+ z

_ (�of.%•+().•. t Le X&+• ,I +a e"- -a Xe-4"+1.%.-I +..



it) IS.(SuiLi.-f Its)e '+ (a..64a 46 )qdL

___&W a-
"Z + )( . ,)e .---

and making use of the inverse Laplace transform;

The following expression for the temperature is derived:

where
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and where the coefficients ( , are:

Coe a 1W,'' C.+ me-Lc

Cis = o~cY" C,4 S -3 .

C . o.cf a CL4  -- Se I(

C33 =.o.cV C3.4- 7e.'c

Cor = o-a'C %3"' 4- ZI(o. + 6,CW)- " 2

C,, L SV'CO C +W (- L-...4. -G•. • - . h 11Z

CT= oc . + x.cm'-(,.•.b+,c)1"-4j4..co +C.ACI
C.3g- I C-+ •COC3• ÷&4 Z. (AA -+ 6C') -JW - I + &AO I-Ta'L

Co,C =-7eOC." - ,G(d6l + 6C,)o.C - ,e4• 6 CC +, CeCA.

C, =- -Ar 4?,CI+' -bo(.bC)atI , 6 4,& + .4- 6C 0

C, 4 I,-- 3 OCaIs- 30(+LL-I-a..bea,--tb + Soa.1ah.kK

C07 drfCOC4r -+- La.A +bc.3oC, 4 4 4-)e0(AC +6hd'

cloy= 4+Io(..J.+)h ea,41 4- d. 06L L )" % + +6,,.'

6eaký - achC

- I&W+, + 104)66-,ic" - So• c 6ck , 6 A-C fiý•,•-/•

C3 7= tLSfGC' _ j +

--8 = - o .6 a(" ot jLk" -- be.) a3.w .~ k 1% d T oL -- Ac 9( - 7(".4- h').• a

Coo = 47-~ •,+-4 •("+ ipc)(eg + X64 e•+oe- w.*L•+( + '+• Ved OK

* . 16" a,. .)-),& oML. do Co+ KIva
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*Co,,- CC3C+ +Z.(&d+*6)4,0iC' + IC& -47Co.,

..+ (,, + AC)) b%2 3,L

-V, M oC a cot €)' e. &)C ( - 4 C&C0,6 f. _OCI

-- ' €,(&.dL4.16 C+ e b%. -I 4-off Cos

+ Ve h~ .i ,- * . * -bsab coca.

As a check on this result, numerical calculations have been made
for two points, and compared with results of a relaxation procedure. The
series was found to converge very rapidly with respect to m, but not very
rapidly with respect to n. The convergence is improved greatly at smaller
values of 4. The calculations were made for the following set of condi-
tions;

Acceleration = 1 Mach number per 30 seconds starting from
No3 1.4

o.L = .909 1/ft

b : 136.3 1/ft -hr

C. = 26,,00 OF/hr

d a 776,000 "pru2

V% = 0.20 ft,

Ok = .384 ft 2 /hr

For 4- a .0383 hrs, or MU- 6:

A-T" u r7w -- ;,o = 660 OF



For-*- : .02165 hr.s, or U 4: % 7

The relaxation procedure given values of 672 OF, and 168.50F respectively
for these conditions.

V AT calculated ATrelaxation % difference

/ 160.50F 168.50F 4.75

6 660OF 6720? 1.79

These percentage differences are within the error of the finite
difference procedure, so that this should serve as a valid check on the
analytical procedure.

a



EFFECT OF DEFLECTIONS ON AER•DYNAMIC COE21ICIMTS

In this appendix, the changes in aerodynamic coefficients due to
the thermal deflections are calculated. The work is based upon the Ackeret
thin wing approximations, i.e., the flow around every chordwise section of
the wing will be considered as two-dimensional and the effect of the tip in
reducing the fluid pressure will be neglected. For the configuration shown
in figure 11, the Ackeret formulae for pressure coefficients on the upper
and lower surfaces of the wing are as follows:

p-p.

C, - -

V41L -1 O

%A = rA* +, + %) -4-r- h,1,.

huter, .r v AM + B(.1r-t- CiI IL

where, 6,~ %1~ -

CCI q-s1 6S
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Hence:s

:+a/.. tU + I C
aL~

1. Lift coefficient

_ LiT ( -

CmiL L C, - ' l .

4-

. Ox. + "IA

ELd
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2. Mment cooeffolent

SHea Up Momstor' A.oer Mismom s

+ C

4-C

3. Dra, coefficient

Cd DA4 d

Va*l (I(12),.)s~ '. Ri~)L-A

= ,-y•_c, - 0 ,,.)(C -1. VIA/ + Ic C~,,.

= . -. , _ 1 . . .l + a .÷L

+ L p*4C.~
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A. NAveratem lift coefficient

I'

CIL. CL I

0

s~~ A~i~r~

6. "Averaeze dram coefficient

ýIC3 4- + 63-O)IOLa

CO " C. cL,%

S,] ,
÷ 4 6. e 6
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For W Ic # .0 /ft 2

014:z .021.2 radians

A sample calculatign will now be made for the case of a wing of
R a 3, and OC = 6.28 x 10-0. Rdsults of oalculations for other wings are
tabulated in table I.

L%. .00118

hlo, : .002738

0-Z : .00885

Jo : .00853

Hence: I C. (4(.O L4.L) _ 4(. ooS)) + 3C(.00 X 7ý S

I .0I66Iy 4

C. =- eos.f) , .(osri)

3 a 000-4- 0 6

4m 4•. 9 6 W) -4-- 3"t. __ ____)

S- 7•-) ( r ... s,..i s. 4(..,r)

CC,~ 17-) tG@L41{ 1 j S.IS Do47S) -aL7

-=. ,-,* v.ooooo,, 4-.00oo6 , ÷.0000o,,o•

MU A00. 7

4( @*T2
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The percenta•. changeo of lift and drag coefficients are defined
ass chane i.n coefficiet due to d aeflctio. z 100

undefleated coefficient

% change in C6 W '4001"1 XIOO u R .X V

% change in C, u 00000o37 4..ooooleo
. coo rat. 100

m4.84.7e
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